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Abstract. This paper introduces a novel problem of facility location,
called the p-next center problem with capacity and coverage radius con-
straints. We formulate a mixed integer programming model for this
problem, and compare the results found by CPLEX with three Biased
Random-Key Genetic Algorithms variants. We also propose several in-
stances for this problem, based on existing ones for the p-next center
problem. Additionally, we analyze the effect of the radius and demand
on instance difficulty. We also observe the performance gains with a re-
laxed capacity and demand constraint, i.e., permitting demand to be
unmet by the model. Results point that the BRKGA variants had sig-
nificantly better performance than CPLEX, and similar performances
among themselves. Of those, BRKGA-FI was shown to have slightly better
results than the other variants.

Keywords: Facility location · Biased Random-Key Genetic Algorithm
· Metaheuristics

1 Introduction

The p-center problem is a classical location problem that consists of choosing p
centers among n nodes in a network in order to minimize the maximum distance
from any node to its closest facility [24].

The p-next center problem (pNCP) is an extension of the previous one that
considers the possibility of a user arriving at a facility and discovering a disrup-
tion in its operation. In this scenario, the user must move to a backup point,
defined as its nearest facility. The objective of the pNCP is to minimize the
maximal distance a user must travel, which is composed by the distance from
a point to its closest existing facility plus the distance from this facility to its
backup. This problem was introduced in the context of humanitarian logistics
by [1], since during an emergency there is a possibility of disruption in facilities
such as shelters and hospitals. The authors also present several formulations,
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instances and the proof of its NP-Hardness. The first heuristic method to solve
this problem was described by [19], based on the Greedy Randomized Adaptive
Search Procedure (GRASP) [10] and Variable Neighborhood Search (VNS) [14].
Later, [17] presented a Biased Random Key Genetic Algorithm (BRKGA) [13]
for the pNCP, alongside several new benchmarks.

The pNCP does not consider that a user may be unable to travel extensive
distances during an emergency, nor the possible consequences of lack of capacity
on the centers. For example, consider the case of a snake attack victim. The
patient must quickly reach the closest treatment center, which may be located
on the same neighborhood as the attack or on a close one. The speed of transport
to the treatment facility is crucial for the patient‘s prospects, as the elapsed time
between injury and care is a factor in severeness and lethality of the wound [6].
In fact, venom of some species of snake demand an elapsed time below a specific
threshold. If there is enough anti-venom at the facility, then the patient will be
efficiently treated and the emergency is resolved. However, the center may lack
the medicine. There are two possible routes for treatment if this happens: (1) the
patient is transferred to a supplied facility, and (2) the medicine is transported
to them. On both cases the elapsed time between injury and therapy increases,
and may lead to avoidable after-effects and/or death if higher then the time
threshold.

Thus, the network of treatment centers must consider the maximum time
elapsed between a possible attack and the closest care facility alongside the
possible transference/transport time, which deal directly with the victim‘s per-
spective. The elapsed time must be below a specific threshold, otherwise the
patient may have severe side-effects or death. It must also deal with a limited
anti-venom capacity among all facilities, so that a center may be able to treat
the highest possible number of patients without needing to bring medicine from
other centers in the network. An unmet demand on a center, after all, is in-
dicative of a probable death. Lastly, this network must deal with a demand for
anti-venom that may be considered static, but distributed among many cities
and/or neighborhoods.

This scenario has motivated us to present an extension of the pNCP, the
p-next center problem with capacity and coverage radius constraints, referred as
pNCPCR. We assume that the user does not know whether there is enough ca-
pacity in a center before arriving, which forces the user to go to a backup center.
We also consider that there is a maximum distance between the beginning of
the user’s journey and the arrival at the backup center, to simulate the elapsed
time between injury and treatment. Thus, this problem unifies the pNCP with
a single-source capacitated facility location problem [11] and a maximum cover-
age location problem [22]. The pNCPCR, thus, is an attempt at increasing the
effectiveness of locating and allocating facilities in emergency situations, such as
the snake attack mentioned previously.

The pNCPCR focus on minimizing the maximal distance traveled by the
users which exceeds the coverage radius and the amount of unmet demand on
the centers. We propose a mathematical model to represent it and, due to its
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difficulty in finding good solutions, a Biased Random-Key Genetic Algorithm
(BRKGA) was customized for this problem. Additionally, we propose several
instances to evaluate the algorithms performance, and observe the effects of the
coverage radius and the center capacity on the results.

The remainder of this paper is organized as follows. Section 2 brings the prob-
lem formulation together with the description of related works. The proposed
method is described in Section 3. Experimental results are reported in Section 4.
Section 5 closes the paper with concluding remarks.

2 Related work and problem formulation

2.1 Related work

The p-center problem has frequently been used for the assignment and location
of emergency services and facilities, specially in the last decade. Huang et al. [15]
studies a version of the p-center problem in which a facility cannot assume the de-
mand of its own location, and thus needs to be allocated to another center. This
situation is frequent in disaster situations, and is solved with dynamic program-
ming. Morgan et al. [21] focus on properly allocating emergency service facilities
during Islamic pilgrimages, in which excessive crowds are a concern. The authors
point that, in regards to distance, coverage, and cover inequality, a genetic al-
gorithm appears to have good balance between quality and computational time.
Lastly, Yu et al. [28] considers that damages to the transport network can affect
accessibility of emergency facilities, and thus introduces a multi-objective model
that tries to guarantee minimum reachability of the facilities. Reachability is
defined as a function of the level of damage on a given trajectory. The authors
use a p-center problem to try to avoid the bi-level structure of the model, and
test the approach on the Sioux Falls transportation network.

The capacitated facility location problem considers the presence of demand
and capacity constraints on the facilities, something that interferes with the al-
location of users to centers [11,26]. Among the works focused on this problem,
Biajoli et al. [5] uses a BRKGA to solve the two-stage capacitated facility lo-
cation problem. The same problem is the focus of Souto et al. [23], who use a
hybrid matheuristic, composed by clustering search, adaptive large neighborhood
search, and local branching techniques. Mauri et al. [20] studies a multi-product
version of the previous problem. The authors use a BRKGA to solve it, and
prove that it outperforms a clustering search approach.

Meanwhile, the maximal covering location problem focus on the coverage ra-
dius, i.e., the maximal distance between user and center allocation [9,22]. In this
category, the study of Taiwo et al. [25] use a maximal covering location prob-
lem to identify potential locations for Covid-19 testing in Nigeria. The author
tests several potential coverage radius, and observes their impact in the resulting
network. Yang et al. [27] presents a continuous version of the maximal coverage
location problem, with the aim of dynamically optimizing the organization of
rescue in natural disasters. Amarilies et al. [2] uses greedy heuristics to solve the
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maximal coverage problem in the context of trashcan location. The results of
this study were implemented on a village in Indonesia.

Several works unify the cited location problems, with the aim of increasing
realism and modelling real-life-based situations appropriately. Karatas et al. [16]
proposes a multi-objective facility location problem, with elements from both
p-median, p-center, and maximum coverage. The authors focus on the design of
a public emergency service network, and use a combination of branch-and-bound
and iterative goal programming techniques to solve it. The study of Chauhan et
al. [7] mixes the capacitated facility location problem with the maximal coverage
problem. This was done in the context of drone launching sites. This study is
extended in Chauhan et al. [8], where the uncertainty in battery consumption is
also considered.

2.2 Problem formulation

The formulation of the pNCPCR is based on the two-indexed formulation in-
troduced by [1]. In this formulation, there are nodes named {1, · · · , n} inside a
network. Those nodes represent locations such as neighborhoods or cities, with
the related distance between them. If a facility is located on one node, then it
is responsible for the demand of both that point and of the closest locations
without facilities. One should note that we use indexes i, j, and k to refer ei-
ther to facility or non-facility nodes, which may also be referred as users. The
parameters and variables of this model are presented in Table 1.

Table 1: Parameters and decision variables definitions.

Parameters

C ∈ N Maximal capacity of the nodes
Ni ∈ N Demand of node i

dij ∈ N Distance between nodes i and j

R ∈ N Maximal distance between user and backup center
p ∈ N Number of facilities to be assigned

Decision variables

yj ∈ {0, 1} yj = 1 if a facility is opened on node j

xij ∈ {0, 1} xij = 1 if center j is the closest to node i

wkj ∈ {0, 1} wkj = 1 if center k is the closest to center j

z ∈ N Maximal traveled distance
tkj ∈ N Capacity transported from center k to center j

uj ∈ N Used capacity in center j

κj ∈ N Unmet demand in center j

δ ∈ N Exceeded traveled distance
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min δ
2
+
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κ
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n∑

j=1

yj = p (1b)

n∑
j=1
j ̸=i

xij = 1 ∀i ∈ {1, . . . , n} (1c)

xij ≤ yj ∀i,j∈{1,...,n}
i̸=j (1d)

yj +
n∑

k=1
dik>dij

xik ≤ 1 ∀i,j∈{1,...,n}
i̸=j (1e)

z ≥
n∑

k=1
k ̸=j

djk · xjk ∀j ∈ {1, . . . , n} (1f)

z ≥ dij · (xij − yi) +

n∑
k=1
k ̸=j

djk · xjk ∀i,j∈{1,...,n}
i̸=j (1g)

z ≤ R + δ (1h)

wjk ≤ xkj ∀j,k∈{1,...,n}
j ̸=k (1i)

wjk ≤ yk ∀j,k∈{1,...,n}
j ̸=k (1j)

tjk ≤ M · wjk ∀j,k∈{1,...,n}
j ̸=k (1k)

C · yj ≥ uj +

n∑
k=1
k ̸=j

tjk ∀j ∈ {1, . . . , n} (1l)

n∑
i=1
j ̸=i

(xij − wij) · Ni +

n∑
k=1
k ̸=j

tjk + Nj · yj − κj ≤ uj +

n∑
k=1
k ̸=j

tkj ∀j ∈ {1, . . . , n} (1m)

κj ≤ M · yj ∀j ∈ {1, . . . , n} (1n)

One must note that variable xij has different meanings that depend on i being
a user or a facility. In the former case, the variable indicates the assignment of
a facility to a user. In the latter, j is the backup center of an existing facility.
Related to this, variable wji only exists if both indexes belong to facilities, and
always corresponds to the assignment of j as the backup of another. In this
formulation, Objective Function (1a) focuses on minimizing the total assignment
cost of the network. This cost has two components. The first component is the
squared excess of the maximal distance between a user and its backup center,
when compared with the coverage radius. This is done to simulate the higher
chance of death due to an elapsed time between injury and treatment higher
than the threshold for after-effects and death. The second component is the sum
of the squared value of unmet demands of each center. In a situation such as a
snake attack, an unmet demand would mean an avoidable death.

Constraint (1b) guarantees that only p centers exist. Constraints (1c) and (1d)
assign a reference center for each node alongside preventing self-assignment of
user nodes. Constraint (1e) imposes a minimal distance when allocating a user
to a reference center. Constraints (1f) and (1g) ensure the correct value of the
highest distance between a user and its backup center. This value is either the
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distance between a reference center and its corresponding backup, or the sum of
the distances between a user and its reference center, and between that center
and its backup. The value of the exceeded travelling distance in relation to the
coverage radius is obtained in Constraint (1h).

Constraints (1i) and (1j) guarantee that the variable wji only exists if both
indexes belong to facilities, and if j is the backup center of i. The existence
of this variable permits the transport of capacity between the centers, as Con-
straint (1k) indicates. As an example, this transferred capacity could be the
transport of medicine between facilities. Constraint (1l) ensures that the used
and transported capacities do not exceed the total available capacity of the cen-
ter. Finally, Constraints (1m) and (1n) regulate the flow of demand and capacity
in a given center, alongside the existence of unmet demands. The sum of the de-
mands of the users allocated to a center, of the capacity transported to other
centers, and of the demand in the center should not exceed the sum of the capac-
ity used in it and of the capacity transported to it. If this equilibrium is violated
there is an amount of unmet demand in the center, which is then penalized in
the objective function.

3 Customizing the BRKGA for the pNCPCR

We developed an algorithm based on the Multi-Parent Biased Random-Key Ge-
netic Algorithm with Implicit Path-Relinking (BRKGA-MP-IPR [4]), which is
a multi-parent variant of the standard BRKGA [13]. This algorithm was chosen
due to its good performance in capacitated location problems [5,20]. In addition,
BRKGA is the state-of-the-art algorithm for the pNCP [17].

3.1 Evolutionary process

The Biased Random-Key Genetic Algorithm (BRKGA) begins by creating p
populations composed by |P| individuals, which are called chromosomes. Each
gene of a chromosome is a real-value number in the interval [0, 1].

The decoder procedure associates a solution and the corresponding fitness
value with a chromosome. The individuals are then ranked by their fitness values.
The solutions with highest quality belong to the elite set Pe, while the remaining
are in the non-elite set.

On each generation three procedures are performed to obtain new popula-
tions. The Reproduction procedure copies all chromosomes in the elite set. Mu-
tants generation deletes |Pm| individuals from the non-elite set and randomly
creates the same amount of individuals. The remaining |P| − |Pe| − |Pm| chro-
mosomes are generated with Crossover.

For the Multi-Parent BRKGA, πt parents are selected for the Crossover
procedure. From those, πe belong to the elite set. The parents’ fitness values are
ranked and associated with probabilities by the bias function Φ(r). Then, each
gene is taken from a parent according to its rank, defined by the comparison of its
fitness value among all parents. The steps of reproduction, mutants generation,
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and crossover procedures are repeated until a stopping criterion is met. If there
is an improvement in the best solution on a given generation, the local search
procedure detailed in Section 3.2 is performed on the new best solution.

An intensification strategy for BRKGA used in this study is the Implicit Path
Relinking (IPR) procedure. Path-relinking explores the neighborhood obtained
in the path between two distinct solutions [12]. IPR is considered implicit due
to being performed on the chromosomes of the BRKGA solution space, not on
the decoded solution [4]. After path-relinking, the algorithm may migrate some
elite solutions between different populations, if g iterations have passed without
improvement in the best solution. Likewise, if Is generations have passed without
improvement, then the shaking procedure presented in Section 3.2 may be called.
Finally, if Is · Rm iterations passed without improvement, then a full reset is
performed.

3.2 Chromosome representation and decoder

For the pNCPCR, the chromosome is a vector with n genes, with n being the
number of nodes in the network. The decoder procedure may be divided in four
phases. The first phase is the selection of centers. In it, the chromosome is sorted
and the first p nodes are chosen as reference centers. The second phase corre-
sponds to the allocation of user nodes to the closest centers, and the computation
of used capacity in each center.

In the third and fourth phases, we allocate backup centers to the reference
centers. However, in the third phase the backup center is only chosen if it has
enough extra capacity to comport the excess demand of the reference center. If
there are no candidate backup centers that obey this constraint, the center is
allocated its closest center as backup in the fourth phase, and the unmet demand
of the center is recorded.

The fitness value of the solutions is obtained as such: the highest value from
the distance to backup center among all nodes is compared with the coverage
radius. If higher, the excess distance is penalized with its squared value. The
squared value of the unmet demand is then added to the squared excess distance.

Warm-start solution. The introduction of good solutions in the initial popula-
tion is noted to increase performance of the algorithm. For the pNCPCR, the
constructive heuristic starts by selecting the first node as a center. The remain-
ing are selected from the p − 1 closest nodes to the first node. The decoding
procedure is then performed to the resulting set of centers and non-centers.

Exploitation strategies. We consider three exploitation strategies apart from IPR
on our approach. The local search procedure, the shaking procedure, and the
reset procedure are noted to lead to better algorithm performance. The local
search observes the solutions found by swapping a user and a center node. It
may use the first improvement or the best improvement strategies. The shak-
ing procedure randomly exchanges an amount of user and center nodes on the
elite chromosomes, and the random restart of the non-elite solutions. The reset
procedure is the random restart of all individuals.
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4 Experimental results

4.1 Instances

We generated 1,652 instances derived from pNCP instances.There are four in-
stance groups, whose differences lie in individual center capacity and coverage
radius. The instances were based on the 132 proposed by [1] and the 281 proposed
by [17].

The process of generating instances for the pNCPCR has three phases. The
first is the definition of demand for each node, which was randomly obtained
from the interval [10, 50]. The second phase is the calculus of the individual
center capacity C = (

∑n
i=1 Di)/(p ·DC). The parameter “DC” in this equation

refers to the demand/capacity equilibrium of a given instance. If the instance is
in category “high demand”, then the sum of demands is 85% of the total capacity.
If it belongs to “low demand”, then this percentage is equal to 40%.

The third phase of the instance generation process is the selection of the
coverage radius. As the original instance solution values have a median of ap-
proximately 95, and a minimum of about 45, the “high radius” category has its
distance limit randomly chosen in the interval [45, 95]. It is expected that, due
to the capacity and demand of the nodes, the maximal distances will increase in
relation to the original instances. The “low radius” category has values randomly
chosen in the interval [15, 30], i.e. at one-third of the previous category.

Each instance name refers to its number of nodes, number of centers, de-
mand category, and radius category, in that order. As an example, instance
pmed1_10_5_h_l has 10 nodes and 5 centers, and belongs to the “high demand”
and “low radius” categories.

4.2 Computational environment and parameter settings

The computational experiments were performed in a cluster of identical ma-
chines with an Intel Xeon E5530 CPU at 2.40GHz and 120 GB of RAM running
CentOS Linux. The formulation proposed in Section 2 was solved with IBM
ILOG CPLEX 20.1 solver. Heuristics proposed in this paper were implemented
in C++ language using the BRKGA-MP-IPR framework [4]. All BRKGA vari-
ants use four threads, and all runs are limited to 30 wall-clock minutes or 1,000
generations without improvement on the best solution.

We run CPLEX with three different setups. In the first, CPLEX uses four
threads and stops either when it finds an optimal integer solution, or it reaches
the maximum time of 30 minutes (CPLEX-30min). This setup is meant to achieve
direct comparison with the other methods proposed in this paper. In the second
setup, we run CPLEX for one day, using 24 threads (CPLEX-1d). Such config-
uration looks to find optimal solutions or, at least, compute the best possible
bounds. Since this configuration uses far more time and computer power per
run than the other configuration, we use the results only for reporting. The
third setup removes the parameter κi from the formulation, which turns con-
straint (1m) into a non-relaxed version (CPLEX-ST). In practice, this means that
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it is forbidden to have unmet demands on the centers. This configuration was
meant to observe the effect of the relaxation of the constraint, and its results
portrait a more realistic approach.

We named the BRKGA variants as follows: BRKGA-NLS for the variant with-
out local search (pure BRKGA evolution); BRKGA-FI for the variant with first-
improvement local search; and BRKGA-BI for the variant with best-improvement
local search. We performed 30 independent runs of each BRKGA variation for
each instance. The parameters used for the BRKGA variations were suggested
by the irace package [18], and may be seen in Table 2.

4.3 Mathematical model results

Our first task is to find optimal solutions or as-best-as-possible solutions for the
1,652 instances.

Note that Model (1) admits at least one feasible solution for each instance.
However, this is not true for CPLEX-ST due to the use of the hard demand
constraint, for which there are instances without feasible solutions.

Table 3 shows the performance of the three CPLEX variants. CPLEX-1d had
the least amount of instances without any solution found, at 722 (44%), with
a significantly smaller average Gap%. This is expected, as it has considerably
more computational power and available time to explore the different solutions.
Following it is CPLEX-30min, with 1,169 (70%) infeasible instances, and, lastly,
CPLEX-ST, with 1,258 (76%). Again, this scenario is not unexpected, as the use
of a hard constraint would diminish the pool of feasible solutions.

Now the effect of the radius and demand category is explored in regards to in-
stance feasibility and non-optimum runs. One should note that several instances
considered infeasible by CPLEX-30min, with the higher computational time from
CPLEX-1d, were considered feasible and, on some cases, an optimum solution was
found. This means that, in this case, we may consider an infeasible instance as
a non-optimal one, and need to combine the results of those two categories in
the analysis. Table 4 presents the percentage of instances without an optimal
solution for the three CPLEX variants regarding their demand and radius cat-
egories. Note that for all cases, CPLEX has more difficulty in finding feasible
solutions on the high demand category. In fact, the effect of the demand is more
severe than that of the radius – something reasonable considering Model (1).

Table 2: Best parameter configurations suggested by irace for BRKGA vari-
antions.

BRKGA IPR Shaking

|P| Pe% Pm% πe,πt Φ p md sel ps% Iipr Is Rm LS%

BRKGA-BI 4085 0.22 0.22 5,10 r−2 2 0.27 RE 0.23 226 60 1.86 0.96
BRKGA-FI 3912 0.28 0.46 5,10 r−2 3 0.05 RE 0.63 471 100 1.77 –

BRKGA-NLS 4075 0.20 0.12 5,10 r−2 1 0.08 RE 0.83 206 96 1.71 –
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Table 3: Model performance on all instances. Columns “Dem.” and “Rad.” de-
tail the demand and radius categories, respectively. Column “# Opt” presents
the number of instances with optimum found. Column “# NoSol” shows the
amount of instances considered infeasible by the respective algorithm, i.e. the
configuration found no feasible solutions for the instance. Column “# Fea” has
the number of instances in which feasible and non-optimal solutions were found.
“Avg. Gap%” is the average percentage of gap for non-optimal and non-infeasible
instances. The fifth line in each section presents the summary of results for all
instances, independently of demand and radius categories.

Dem. Rad. # Opt # NoSol # Fea Avg. Gap%

CPLEX-30min

High High 43 78 292 84
High Low 45 77 291 63
Low High 87 290 36 93
Low Low 81 296 36 80

Both Both 256 1,169 227 78

CPLEX-1d

High High 120 164 120 89
High Low 108 193 108 64
Low High 36 173 36 75
Low Low 35 192 35 63

Both Both 299 722 299 75

CPLEX-ST

High High 41 337 41 94
High Low 43 333 43 82
Low High 31 295 31 84
Low Low 38 293 38 74

Both Both 153 1,258 153 84

The effect of the radius category is more subtle, and becomes more apparent
with the longer running time and computational power of CPLEX-1d.

4.4 BRKGA results

To compare the algorithms, we analyze the results regarding the solution quality
and computational effort. For solution quality, we compute the classical Relative
Percentage Deviation (RPD) and associated averages as defined in [3], with a
small modification to prevent division by zero. Let I be a set of instances. Let A
be the set of algorithms, and assume that set RA enumerates the independent
runs for algorithm A ∈ A (as defined in Section 4.2, 30 runs for the heuristics
and one run for CPLEX-30min). We defined CA

ir as the total cost obtained by
algorithm A in instance i on run r, and Cbest

i as the best total cost found across
all algorithms for instance i. In order to deal with the possibility of having a
best known solution equal to zero, which happens on 11 instances, we introduce
the constant c∗ > 0 on the computation. This is done to prevent the division by
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Table 4: CPLEX results in regards to categories and percentage of infeasible
and non-optimal instances. The percentages presented refer to the amount of
non-optimal and infeasible instances in relation to the total.

High Rad. (%) Low Rad. (%)

CPLEX-30min
High Dem. 90 89
Low Dem. 79 80

CPLEX-1d
High Dem. 69 73
Low Dem. 50 55

CPLEX-ST
High Dem. 91 91
Low Dem. 79 80

zero that would happen on those cases. The RPD from the best solution i is,
thus, defined as

RPDA
ir =

CA
ir − Cbest

i + c∗

Cbest
i + c∗

× 100, ∀A ∈ A, i ∈ I, and r ∈ RA. (2)

The BRKGA variants did not have the same difficulties as CPLEX-30min
with infeasible solutions, finding at least one feasible solutions for all instances.
Figure 1 presents a boxplot with RDP distributions for each algorithm. Note that
the y-axis is plotted on a log scale to enhance the visualization. The reason is that
most of the algorithms found optimal solutions frequently, skewing the display on
a linear scale. In fact, the median of the RPD distributions of the three BRKGA
variants was zero, which indicates that at least half of the instances reached the
best or optimal solution.

However, all three algorithms had runs with considerably high RPDs, some-
thing that skews the results. In fact, the mean of all distributions was higher
than the value of the 0.75 percentile, and the maximal RPD for BRKGA-BI
and BRKGA-FI variants was 15,132. BRKGA-NLS had a maximal RPD of 15,902.
BRKGA-NLS presented slight better results than its counterparts, with 1, 486 ±
2, 952%; BRKGA-FI produced 1, 475 ± 2, 937%; and BRKGA-BI had an average
of 1, 480± 2, 943%. Since those results are too close to call, we applied the pair-
wise Wilcoxon rank-sum test with Bonferroni p-value adjustment method among
all algorithms. With a confidence interval of 95%, we cannot affirm there is a
significant difference on the results of the three BRKGA variations.

Table 5 presents the results in regards to the instances with optimal and
non-optimal found by CPLEX-30min. One may note the BRKGA variants had
a poor performance on the instances with known optima, finding the optimal
solution on only 5% of instances and on circa 5% of runs. The performance
of all three BRKGA variants was considerably similar for those instances. For
instances with unknown optima, BRKGA performance was considerably better.
In fact, all three variants found the best known solution for those instances
in, in average, 80% of instances. This was done on at least 70% of runs. One
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Fig. 1: Distribution of relative percentage deviations for each algorithm. Note
that, since the data is plotted in log scale, zero deviations are not shown, although
the algorithms have reached them.

Table 5: Algorithm performance on all instances.

Algorithm

Known Optima (256 instances) Unknown Optima (1340 instances)

# Opt % Opt % Run # Best % Best % Run

BRKGA-BI 13 5.08 5.01 1106 79.23 71.91
BRKGA-FI 13 5.08 5.08 1146 82.09 74.35
BRKGA-NLS 13 5.08 5.07 1143 81.88 73.03

may note that BRKGA-FI had the best performance among the algorithms, with
higher percentages on all criteria. BRKGA-BI had the worst performance of the
algorithms.

Finally, Figure 2 presents the cumulative probability of finding the best or
optimal solution in relation to running time of the algorithms. Note that all
BRKGA variants had better performances than CPLEX-30min on 1,800 seconds.
In addition, BRKGA-FI is shown to be better than the other variants, with higher
chance of finding the best solution on lower times. Note also that all three
BRKGA variants tended to finish before the maximum permitted time. This
means the BRKGA is reaching the upper limit on the number of iterations with-
out improving the best solution, which indicates quick convergence.

When considering all results presented in this section, there are many conclu-
sions that may be observed. The first is that BRKGA was shown to have a better
performance than that of CPLEX-30min, when considering feasible solutions and
cumulative probability of finding the best solution. The second consideration is
that BRKGA-FI performed better than the other BRKGA variants, even if we
cannot affirm the presence of a difference between the RPD distributions of the
three algorithms. The last conclusion is that the BRKGA variants converged



An extension of the p-next center problem 13

quickly, and tends to find the optimal solutions, as shown by the medians of the
RPD distributions being zero.

5 Conclusions

In this work, we presented the p-next center problem with capacity and coverage
radius constraints, referred as pNCPCR. This is an extension of the p-next center
problem introduced by [1], itself an extension of the classical p-center problem.
The novel pNCPCR was inspired on a situation of a snake attack, in which
the victim cannot be treated on the closest facility due to a lack of medicine.
We formulate a mathematical model for the pNCPCR, and develop a Biased
Random-Key Genetic Algorithm (BRKGA) to solve this problem.

In order to observe the effectiveness of our proposed approach, we generated
1,652 instances based on the ones used in [17], and divided in four categories. To
find optimal solutions to those instances, we used three CPLEX configurations.
Of those, CPLEX-30min is used in the comparison with BRKGA. We also observed
the effects of the flow constraint in the proposed model, by running CPLEX-ST
with a harder version of this constraint.

CPLEX-30min results were compared with BRKGA variants, which differ in
local search approaches. One may node that all three BRKGA variants had
better performances than CPLEX-30min, and that the performances of those al-
gorithms was very similar, with BRKGA-FI being slightly better than the other
variants.

There are several possible future works based on this research. One may
consider non-uniform facility capacities, something that the model and instances
proposed in this paper do not. In addition, the problem could also be formulated
as a two-stage problem with stochastic demand.

Seconds to reach a best solution
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Fig. 2: Running time empirical distributions to the best solution values for all
instances. The identification marks correspond to 2% of the points plotted for
each algorithm.
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