7!
x L\/[SIMPésI0 BRASILEIRO DE PESRUISA OPERACIONAL 16 a 19
Pesquisa Operacional na Gestao da Seguranca PUblica Setembro de 2014

Salvador/BA

Some extensions of biased random-key genetic algorithms

Marina L. Lucena
Department of Informatics — Pontifical Catholic University of Rio de Janeiro
Rua Marqués de Sao Vicente, 225, CEP 22451-900, Rio de Janeiro, RJ, Brazil

marina.lucenalglobo.com

Carlos E. Andrade*
Institute of Computing — University of Campinas
Av. Albert Einstein, 1251, CEP 13083-852, Campinas, SP, Brazil
andrade@ic.unicamp.br/ce.andrade@gmail.com

Mauricio G. C. Resende
AT&T Labs Research
200 Laurel Avenue, Middletown, NJ 07748, USA
mgcr@research.att.com

Flavio K. Miyazawa
Institute of Computing — University of Campinas
Av. Albert Einstein, 1251, CEP 13083-852, Campinas, SP, Brazil
fkm@ic.unicamp.br

ABSTRACT

In this paper, we propose two new variants of the Biased Random-Key Genetic
Algorithm. In the first, the algorithm assigns a gender to each chromosome and only
allows crossover between chromosomes of different gender. In the second variant, more
than two parents are used to generate a new offspring. Computational experiments are
conducted on instances of set covering and set packing problems. We empirically show
that the multi-parent modification is able to overcome the original biased random-key
genetic algorithm although it requires slightly more time and iterations to converge.

KEYWORDS. Genetic Algorithms, Crossover, Combinatorial optimization, Meta-
heuristics.

*Corresponding author.

2469

7!
x L\/[SIMPésI0 BRASILEIRO DE PESRUISA OPERACIONAL 16 a 19
Pesquisa Operacional na Gestao da Seguranca PUblica Setembro de 2014

Salvador/BA

1. Introduction

Biased random-key genetic algorithms (Gongalves and Resende, 2011) are derived
from the random-key genetic algorithm of Bean (1994), where each chromosome is usually
a vector of randomly generated real numbers in the interval [0, 1]. This representation en-
ables the algorithms to generate new individuals very easily and apply the genetic operators
in a standard and well-defined way. This means that if one can write a function (decoder)
to map a vector of real numbers into a solution for the problem on hand, there is no need to
worry about how the genetic operators work or how the framework manages the population
of chromosomes. Although some genetic parameters must be set, the overall application
of the algorithm is relatively simple and straightforward. In fact, a freely-available appli-
cation programming interface (API) for BRKGA has been developed (Toso and Resende,
2014).

Biased random-key genetic algorithms (BRKGAs) have been used with success
both in several classical hard combinatorial optimization problems as well as on real-world
problems. For example, Resende (2012) surveys applications of BRKGA in optimiza-
tion problems arising in telecommunications. Gongalves and Resende (2011, 2012, 2013)
present BRKGAs for 2D and 3D packing and bin packing. BRKGAs have been applied
to a number of scheduling problems, e.g. job-shop scheduling (Gongalves et al., 2005;
Gongalves and Resende, 2014), and resource constrained project scheduling (Gongalves
et al., 2008; Mendes et al., 2009; Gongalves et al., 2011). Andrade et al. (2013) solve the
k-Interconnected Multi Depot Multi Traveling Salesman Problem with consists in creating
a central cycle of nodes (main route or backbone) and, for each vertex of the central cycle,
we must attach a secondary cycle (local route or network ring) that starts and ends in the
vertex. In Andrade et al. (2014), the BRKGA is used to solve the Overlapping Correlation
Clustering problem, where one must label objects such the error between their similarities
and the labeling be minimized. In this problem, the objects can have several labels which
may overlap. The problem models several problems with big data, as protein sequencing,
mobile device trajectories, and set of messages and documents. The BRKGA was able to
overcome the state of art algorithms for this problem.

In this paper we consider some internals of BRKGAs and propose two modifi-
cations aimed to improve the quality of solutions obtained by the algorithms. The first
proposal is to define a gender for each chromosome in such way that, during the crossover,
only individuals of different gender are allowed to recombine. In the second proposal,
several parents are chosen from the population and ranked according to a given weight-
ing function. Then, parameterized uniform crossover is performed such that each allele is
taken from a individual chosen by the roulette method. We use instances of the set covering
and set packing problem to illustrate our proposals, using the same decoding process for
all variants. Computational results are presented. The structure of this paper is the follow-
ing: Section 2 reviews the fundamentals of BRKGAs. Section 3 presents the BRKGA with
gender definition and multi-parents. In Section 4, computational results are presented, and
final comments are made in Section 5.

2. Basic BRKGA

Before we discuss the origins and main characteristics of BRKGAs, let us recall
some terminology of genetic algorithms: the chromosome c is vector in a certain space
‘H" such that n is the number of components. Each component c;, forz = 1,...,n, is

2470

7!
x L\/[SIMPésI0 BRASILEIRO DE PESRUISA OPERACIONAL 16 a 19
Pesquisa Operacional na Gestao da Seguranca PUblica Setembro de 2014

Salvador/BA

called gene and its value is called allele. The genetic algorithm keeps a pool of vectors
called population and for each chromosome in this population, a fitness function is applied
to evaluate these chromosomes. In general, the fitness function constructs a solution from
the chromosome and calculates its value. These values are used as fitness measures of
each individual. The evolutionary step consists in building a new population by combining
individuals of the current population, in general, selecting alleles from them to create the
offspring. An additional step, called mutation, is applied with low probability when an
allele is chosen and modified randomly. There is a large number of variations of this
process and a comprehensive list can be found in Goldberg (1989).

The first random-key genetic algorithm (RKGA) is due to Bean (1994). Bean
applied this algorithm to machine scheduling problems where one seeks a sequence of
machines to perform operations such that the completion time of the last operation is
minimized. The RKGA is an elitist genetic algorithm based on a population of vectors
v € [0, 1]™. This population has size p. The evolutionary process and generation of a new
population consists of the following steps:

1. Copy p. best individuals to the population of the next generation;
2. Introduce p,, randomly generated individuals in the population of the next genera-
tion (Bean calls these individuals “immigrants’);
3. Until the remaining p — p. — p.», Spots in the new popuation are not filled:
(a) Select two individual uniformly at random from entire previous population;
(b) Generate a new individual using parameterized uniform crossover (Spears
and DeJong, 1991): For each allele, a coin is tossed and an allele is copied
from one of the parents according to the outcome of the coin toss.

The most interesting and important characteristic of the RKGAs is the crossover be-
tween individuals. As opposed to traditional genetic algorithms, the RKGA performs the
crossover without caring about the feasibility of the solutions generated for the new indi-
viduals. This is possible because of the standard chromosome encoding that is responsible
to guarantee the feasibility of the decoding function. The decoding function or decoder
d : [0,1]" — S maps the real vector with a valid solution in the solution space S. In
some problems where feasibility is hard to achieve, the decoder may generate invalid solu-
tions, making use of a penalty factor. Also, the RKGAs have no mutation in chromosomes,
but instead they introduce random individuals in the new population called immigrants or
mutants. Mutants play the same role as mutation in traditional genetic algorithms.

The BRKGA was introduced in Gongalves and Almeida (2002) and Ericsson et al.
(2002) and follows the same structure of RKGAs with respect to the population and in-
troduction of mutants. Algorithm 1 depicts the main loop. The main differences between
them are twofold: First with respect to how individuals are chosen for crossover; and sec-
ond, how this crossover is done. In a RKGA, as the individuals are chosen at random from
the entire population, there is the possibility of choosing two chromosomes with bad fitness
and thus generate a poor-quality offspring. In a BRKGA, the population is partitioned into
two sets: an elite set that contains the p. best individuals and a non-elite set with the re-
maining individuals. Thus, an individual is chosen uniformly at random from the elite set,
and other is chosen from the non-elite set also uniformly at random. One can note that this
biased strategy chooses a good individual trying to propagate its genes. A drawback is that
this strategy leads to a faster convergence to local optima and optimization may finish too

2471

7!
x L\/[SIMPésI0 BRASILEIRO DE PESRUISA OPERACIONAL 16 a 19
Pesquisa Operacional na Gestao da Seguranca PUblica Setembro de 2014

Salvador/BA

early. To avoid this, it is very important to use a restart strategy where the entire population
is reset to new random individuals.

Algorithm 1: BRKGA scheme.

1 Generate the initial population P;
2 while a stopping criteria is not reached do
3 Decode each chromosome of P and extract their solutions and fitness;

4 Sort the population P in non-increasing order of fitness. Consider the top
pe individuals as the elite group E;

5 Copy FE to the next generation (), unaltered,;
6 Add p,, randomly-generated new chromosomes (mutants) to ();

7 Generate p — p. — p., chromosomes (offspring) by uniform parameterized
crossover, selecting a random parent from F and another from P\ E. Add
them to ();

8 P+ Q;

9 return best individual found.

The crossover in BRKGA is also biased. This is done using a probability p such
that if the value of a coin toss is less than or equal to p, the allele is taken from the elite
parent, otherwise from the non-elite parent (the coin values are drawn from an uniform
distribution in the real interval [0, 1]). If p > 0.5, then in expectation the offspring will
contain more alleles from the elite parent than the non-elite parent and, therefore, is likely
to contain good structures inherited from the former. One can note that when p = 0.5 we
have the standard uniform crossover, and when p < 0.5 there is more probability to inherit
from the non-elite chromosome which makes little sense since the non-elite parent is worse
than the elite parent. details of BRKGAs can be found in Gongalves and Resende (2011).

3. Gender Defining and Multi-parent BRKGA

We propose major modifications to the BRKGA framework with the objective of
improving the quality of the solutions found by the algorithm. In the first proposal, we try to
mimic sexual reproduction that occurs in nature by assigning a gender to each chromosome.
In the second proposal, more than two parents are used to create an offspring with the
objective of combining the diversity of good solutions into an offspring.

The Gender Defining Biased Random-Key Genetic Algorithm (BRKGA-GD) as-
signs a bit for each chromosome such that its value defines the gender. To apply crossover,
two chromosomes of different gender are chosen from the elite and non-elite set and the
procedure follows the same steps of the original BRKGA. The gender of the new offspring
is defined at random to be equally probable to be of any gender. It is possible that the
entire population may have only one gender. In this case, the algorithm is restarted with
a new random population. However, this is very rare, since it is expected that the mutants
introduced in the population have a well distributed genders (recall that the mutants are
generated using a uniform distribution, including for gender assignment).

The Multi-Parent Biased Random-Key Genetic Algorithm (BRKGA-MP) uses sev-
eral parents to produce an offspring using a weighted combination of them. A BRKGA-MP

2472

7!
x L\/[SIMPésI0 BRASILEIRO DE PESRUISA OPERACIONAL 16 a 19
Pesquisa Operacional na Gestao da Seguranca PUblica Setembro de 2014

Salvador/BA

selects as many parents as the parameter 7; determines. Among these, 7. are elite parents
and 7; — 7. are non-elite parents. Each parent has a given associated probability of passing
its alleles to the offspring. This probability is calculated by taking the parent’s bias into
account. Parent bias is defined for a given weighting function. We used the bias functions
proposed by Bresina (1996):

e Logarithmic: bias(r) = log™ ' (r + 1);
e Linear: bias(r) = 1/r;
e Polynomial (n): bias(r) =r~";

e Exponential: bias(r) =e™".

Algorithm 2 shows the complete crossover procedure. In lines 1 and 2, the parents
are chosen and sorted according their fitness. Lines 3-8 calculates the probabilities of each
parent. The function rank() returns the position or rank of the supplied chromosome in the
given order which is passed to the bias function. Note that we must do a normalization step
to compute the correct probabilities. Lines 9—12 carry out the crossover. For each gene, a
parent is chosen using the well-known “roulette” method that uses the probabilities calcu-
lated in the previous steps, and its allele is assigned to the gene of the new chromosome.
Note that the entire procedure is done for each new offspring that is generated.

Algorithm 2: BRKGA-MP crossover scheme.

Input: Number of genes n; Elite set £; Non-elite set R; function
bias : N — R; values m; < |E U R|, and 7, such that 7, < |E| and
Te < Ty

1 Sample uniformly random 7. individuals from £ and 7m; — 7. individuals from
R. Let () be these individuals;

2 Sort () in non-increasing order of fitness;

3 totalyeight < 0;

4 foreach g € Q) in the given order do

s | weight(q) + bias(rank(q));

6 L totalyeignt < totalyeign: + weight(q);
7 foreach g € () do

8 L weight(q) < weight(q)/totalyeight;

9 Let c be an empty new chromosome;

10 fori =1tondo

1 Select an individual ¢ € () using the “roullete” method based on its weight;
12 L cli] < qli];

13 return c;

4. Experimental results

4.1. Test Problems

To evaluate the performance of the proposed algorithms, we used decoders for the
set covering and set packing problems. We made no modification to these decoders and
compare all results with those obtained with the original BRKGAs.

2473

7!
x L\/[SIMPésI0 BRASILEIRO DE PESRUISA OPERACIONAL 16 a 19
Pesquisa Operacional na Gestao da Seguranca PUblica Setembro de 2014

Salvador/BA

For the set covering problem, we considered the decoder of Resende et al. (2011)
proposed for the Steiner triple covering problem. This problem is NP-hard (Fulkerson
et al., 1974; Garey and Johnson, 1979). Furthermore, its benchmark instances are compu-
tationally challenging (Ostrowski et al., 2010). The decoder takes a vector of size n such
that each component is related to a set by its index. Thus, it builds a covering considering
all sets whose components are greater than or equal to 0.5. If the result is not a valid cover-
ing, the remaining elements are fixed using a greedy procedure which selects the smallest
index set that covers the maximum uncovered elements until the covering is complete. The
decoder also performs a pruning phase, removing sets that do not destroy the covering. For
more details, the reader can refer to Resende et al. (2011). We consider 45 set-covering
instances available in OR-Library (1990).

We also applied the algorithms for the weighted set packing problem, also known
to be A'P-hard (Garey and Johnson, 1979). In the weighted set packing problem, one
seeks pairwise disjoint sets such the sum of their weights is maximized. We used instances
for the winner determination problem generated with CATS (Leyton-Brown and Shoham,
2006) and instances from Lau and Goh (2002). The winner determination problem arises
in the context of combinatorial auctions and is usually modeled as a weighted set packing
problem (Cramton et al., 2006). We chose ten instances, each of size: 400; 1,000; 1,500;
2,000; and 4,000 sets. These 50 instances are considered hard to solve, as one can see in
the following discussion. We use one of the decoders presented by Andrade et al. (2014).
In this case, each allele corresponds to a set. The alleles are sorted in non-increasing order
of values and the sets are taken in this sequence. If the current set is not disjoint from the
previously selected sets, it is not considered to be in the solution. Andrade et al. (2014)
presents different ways to form the initial population. In the present paper, the population
is initialized exclusively with random individuals.

4.2. Computational environment and Parameters

The experiments were conducted on identical machines with two 6-core Intel Xeon
2.4 GHz CPUs (two thread per core) and 32 GBytes of RAM running GNU/Linux. Run-
ning times reported are UNIX real wall-clock times in seconds, excluding the effort to read
the instance. The algorithms are implemented in the C++ language with the API of Toso
and Resende (2014) and use the GNU g++ compiler version 4.8. Random numbers were
generated by an implementation of the Mersenne-Twister (Matsumoto and Nishimura,
1998).

For the set covering problem, we configure the BRKGA as in Resende et al. (2011).
The population size was set to p = 10n where n in the number of sets. The elite size to p. =
[1.5n]. The number of mutants are set to p,,, = |5.5n]. The probability of inheriting each
allele from elite parent was p. = 0.60. We used the island model with three independent
and concurrent populations. Every 100 generations, each population exchanges its two best
solutions. Every 500 generations without improvement all populations are reset. We use
eight simultaneous cores for decoding.

Thirty independent runs were carried out for each instance and algorithm configura-
tion. Each run was limited to 1,000 generations without improvement, or 3,600 wall-clock
seconds.

2474

x L\/[SIMPésI0 BRASILEIRO DE PESRUISA OPERACIONAL 16 a 19
Pesquisa Operacional na Gestao da Seguranca PUblica Setembro de 2014

Salvador/BA

Bias Functions

7 Functions
[e0] X -1
QA —— log (r+1)
! B
2 +- 2
© \ -3
40 -3
E e \ r—r
o 4 % e
< %
o < |
e o a
[T
\ s
o N
N _.'t%.\‘t_ ﬂ— — A
U R S ey
g _| = e T ;,‘\’-' S % S _*_’»'.'L‘-_.\,g:‘_- . _.'é»_i%

1 2 3 4 5 6 7 8 9 10
Rank

Figure 1. Probabilities induced by the bias functions.

4.3. Evaluation of Multi-parent BRKGA

We first evaluate BRKGA-MP. The first pair of parameters to be chosen is the
number of parents to use in crossover and, of these, how many are elite. We tested eight
parent/elite pairs: 3/1, 3/2, 6/2, 6/3, 6/4, 10/3, 10/5, and 10/7. Pairs 3/1, 6/2, and 10/3 have
a small number of elite individuals (non-elitist configuration), while pairs 6/3 and 10/5 try
to balance elite and non-elite individuals (balanced configuration), and pairs 3/2, 6/4, and
10/7 have more elite than non-elite chromosomes (elitist configuration). The next param-
eter is the bias function to be used. We considered the functions listed in Section 3 and
chose the quadratic and cubic version of polynomial functions. We refer to each configura-
tion as a tuple (mp, bf), where mp represents the multi-parent configuration and bf is the
bias function. For example, the tuple (3/2,r~') indicates that we have three parents for
crossover such that two are elite chromosomes, and they are weighted by the function 7+
applied to their rank.

We analyze the bias functions with respect to the number of parents for crossover.
Figure 1 depicts the probabilities induced by each function. The X axis is the chromo-
some ranking and the Y axis is the allele selection probability. Functions r~2 (magenta
dotted line with plus signal), » 2 (black dashed dotted line with crosses), and e~" (orange
dashed line with diamonds) assign high probability to the top ranked chromosome using a
mechanism similar to the original BRKGA with p > 0.5. One can note that, even if one
chooses a large number of non-elite individuals for crossover (cases 3/1, 6/2, and 10/3), the
elite individuals still have a better chance to be chosen. Functions log™'(r 4 1) (red solid
line with circles) and 7! (blue dashed line with triangles) are softer and evenly distribute
the probabilities although assigning higher probabilities to the first two individuals. They
enable a more interbred offspring made up of alleles from several parents. Note that, in
this case, it may be better to choose a configuration such as 3/2, 6/4, and 10/7 to keep good
structures from different elite chromosomes in the population.

Table 1 shows the results for each configuration in finding the optimal or the best

2475

7!
x L\/[SIMPésI0 BRASILEIRO DE PESRUISA OPERACIONAL 16 a 19
Pesquisa Operacional na Gestao da Seguranca PUblica Setembro de 2014

Salvador/BA

Table 1. BRKGA-MP performance for several settings. For set covering instances, the
% run is the percentage of runs where an optimal solution was found. For set packing
instances, the % run is the percentage of runs where the best known solution value was
found.

log=Y(r 4+ 1) ot r—2 r3 e "

%9 Run Gap %Run Gap %Run Gap %Run Gap % Run Gap

3/1 90.66 0.03 9288 0.02 9466 0.02 9511 0.01 91.55 0.02
32 9111 003 9244 0.02 9644 0.01 91.11 0.02 9333 0.02
6/2 8888 005 8&7.11 0.05 90.66 0.03 93.77 0.03 92.00 0.03
6/3 8622 0.06 8577 0.06 9244 0.02 8933 0.05 90.66 0.03
6/4 83.11 0.08 83.11 0.07 9333 0.02 88.00 0.04 9322 0.02
10/3 86.66 0.06 8444 0.07 88.00 0.04 90.66 0.04 88.88 0.04
10/5 83.11 0.07 8133 0.09 92.00 0.03 8.77 0.07 91.11 0.03
10/7 80.00 0.09 79.55 0.09 89.77 0.04 82.66 0.08 90.22 0.05

Average 86.22 0.06 85.83 0.06 9217 0.03 8956 0.04 9138 0.03

3/1 4250 141 4333 131 40.83 140 3375 214 4125 1.45
32 4250 129 4250 142 3541 1.75 2958 2.61 3541 1.6l
6/2 4208 137 4125 130 36.66 146 2625 260 3791 1.48
6/3 41.66 128 4041 134 3291 1.74 2791 279 3791 1.72
6/4 4041 132 3958 1.35 3458 1.82 2541 295 3291 1.8l
10/3 4375 131 4333 129 3833 154 2625 292 3500 2.17
10/5 3833 137 40.83 133 3458 1.79 2458 338 2958 270
10/7 40.83 134 4125 132 3333 192 2416 395 2958 2.84

Average 4151 134 4156 133 3583 1.68 2724 292 3495 197

Inst. M.P.

Set Covering

Set Packing

known solution for each instance. The first column lists the instance class; the second
column shows the multi-parent configuration using the same notation introduced in the be-
ginning of this section; for each bias function, we have a pair of columns. Column “% Run”
shows the percentage of runs for which the algorithm was able to obtain either the opti-
mal solution (for set covering) or the best known solution (for set packing). Column “Gap”
shows the average distance (in percentage) between the solution found and the optimal/best
known value. The table has two parts, each listing a different set of instances. For set cov-
ering problems, BRKGA-MP in general obtained very good results, producing an optimal
solution in more than 79% of runs. Note also that the gaps are very small, never greater
than 0.09%. The best results are found by configuration (3/2,r~2) and the ranking func-
tion 72 obtained the best results on average. The set packing instances are much harder
to solve and this can be seen considering the low number of runs that obtained the value
of the best known solution. Although this percentage of runs was around 40%, the gaps
are small and are not greater than 3.95%. The best configuration was (10/3,log™" (r 4+ 1)).
Note that both ranking functions log™" (r 4 1) and 7! obtained similar results.

It is interesting to note that for easier instances, a strong elitist configuration leads
to the best results: (3/2,772) combines two elite parents with one non-elite parent using
a strong bias in favor to the elite parents due to ranking function 7—2. On the other hand,
for harder instances, the less elitist strategy (10/3,log™*(r + 1)) works better: it combines
only three elite parents with seven non-elite parents using a “soft” ranking function.

2476

7!
x L\/[SIMPésI0 BRASILEIRO DE PESRUISA OPERACIONAL 16 a 19
Pesquisa Operacional na Gestao da Seguranca PUblica Setembro de 2014

Salvador/BA

4.4. Comparing the algorithms

Table 2 shows, for each algorithm, the percentage of runs in which the optimal
solution value or the best solution value was obtained, for each type of instance. The
first column indicates the instance type; The second column groups the instances by their
sizes. The rest of the table is partitioned into three blocks, one for each algorithm. In each
block, column “% Run” shows the percentage of runs in which the optimal solution value
or the best solution value was obtained, and column “GAP” shows the average percentage
gap between the solution found and the optimal/best known value. For BRKGA-MP, the
additional column “Config.” shows the best configurations used to obtain those results.

One can note that to assign gender to the chromosomes did not result in significant
improvements. Note the BRKGA-GD only outperformed the others algorithms for the set
packing instances of size 400. In general, BRKGA-MP outperformed the original BRKGA.
The exceptions are set covering instances of size 200 and set packing instances of size
1000, where the performances of the algorithms were similar. It is important to highlight
that BRKGA-MP found almost all best solution values for all “non-elitist” configurations
represent by a star in the table.

Figures 2 and 3 depicts the performance profiles for the algorithms. In performance
profiles, the abscissa shows the time needed to reach a target solution value, while the
ordinate shows the cumulative probability to reach a target solution value for the given time
(in log scale) in the abscissa. In Figure 3, instead of showing the time, the abscissa shows
the number of iterations to reach a target solution value. Each algorithm is characterized by
a different performance profile curve made up of (time/iterations, cumulative probability)
pairs, one for each execution of the algorithm on a particular instance. Runs that took over
3,600 seconds are not shown in the figure. Therefore, the percentage of runs that concluded
within the time limit can be seen as the intersection of the profile with the right hand side
of the figure. One can note that the original BRKGA is able to find good solutions faster
than the other algorithms and uses less iterations to do that in all cases. BRKGA-GD was
not able to produce as good results as the other algorithms in any case. Note also that,
although BRKGA-MP has a slower convergence than the original BRKGA, it was able to
overcome BRKGA on hard set packing instances as one can observe at the very end of the
curves of Figure 2b.

Table 2. Cost comparison among the algorithms. The gap is given in percentage.

. BRKGA BRKGA-GD BRKGA-MP
Inst. Size
% Run Gap % Run Gap % Run Gap Config.

z 200 96.80 0.00 6506 019 96.80 0.01 (3/2,1/r?)
© 300 90.66 0.03 6333 020 96.00 0.01 (3/2,1/73)
A 400 99.66 0.00 78.66 0.13 100.0 0.00 *

400 526 046 2666 0.75 2333 0.55 (3/1,1/r),(6/3,e7")
~ 1000 66.66 1.20 26.66 526 66.66 1.22 (3/1,1/r)
£ 1500 4736 095 5833 083 71.66 045 (10/3,1/log(r+ 1))
g 2000 0.00 2.41 0.00 15.67 3.33 215 (10/3,1/r)

4000 0.00 336 000 1964 333 263 (10/7,1/log(r + 1))

* All non-elitist configurations.

2477

7/
/ x L\/[SIMPOSI0 BRASILEIRO DE PESRQUISA OPERACIONAL

o <
— |-~ BRKGA S 7||-o- BRKGA
o || BRKGA-GD —— BRKGA-GD
S 7||-=— BRKGA-MP —=— BRKGA-MP
© |
o
2 | Z 37
g 2
Qo © Q
o ° o
S | Qo |
2° 2°
T T ©
= =]
E o :
o —
o O g
A
g -
T T T T T T T T T T
0.1 1 10 100 1000 0.1 1 10 100 1000
Seconds to reach the best solution Seconds to reach the best solution
(a) Set covering instances. (b) Set packing instances.

Figure 2. Running time distributions to obtain the best solution value. The points in this
plot correspond to 2% of the produced points for each algorithm.

o <
=7 - S
[}
@ 4
Q|
°)
2 | 2o
3 o] 3
8 | 3
o ° o
Qg Qo
N 2°
g5 g
5 © =
2] :
IS -
S < S5
N
— | —— BRKGA —— BRKGA
© ' —— BRKGA-GD —<— BRKGA-GD
—=— BRKGA-MP —=— BRKGA-MP

T T T T T T T T T T T T
0 100 300 500 700 900 0 100 300 500 700 900
Iterations to reach the best solution Iterations to reach the best solution

(a) Set covering instances. (b) Set packing instances.

Figure 3. Distributions of the number of iterations to obtain the best solution value. The
points in this plot correspond to 2% of the points produced for each algorithm.

5. Final considerations

In this paper, we presented two new new variants of biased random-key genetic
algorithms. In the first approach, called BRKGA-GD, we proposed the assignment of
gender to each chromosome and only allow crossover between chromosomes of different
gender. In the second approach, called BRKGA-MP, we proposed to use more than two
parents in crossover. We tested the algorithms for set covering and set packing instances.
One can note that to differ chromosomes by gender did not result in any advantage over the
original BRKGA. In fact, BRKGA-GD presented the worst results among all algorithms.
The crossover between several parents was able to obtain better results than the original
BRKGA, but mainly using a non-elitist strategy where more non-elite than elite individuals
are chosen to generate a new offspring. On the other hand, BRKGA-MP required more
time and iterations than the original BRKGA to converge.

16 a 19

Pesquisa Operacional na Gestao da Seguranca PUblica Setembro de 2014

Salvador/BA

2478

7!
x L\/[SIMPésI0 BRASILEIRO DE PESRUISA OPERACIONAL 16 a 19
Pesquisa Operacional na Gestao da Seguranca PUblica Setembro de 2014

Salvador/BA

References

Andrade, C. E., Miyazawa, F. K., and Resende, M. G. C. (2013). Evolutionary al-
gorithm for the k-Interconnected Multi-Depot Multi-Traveling Salesmen Problem. In
Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation,
GECCO ’13, pages 463—470, New York, NY, USA. ACM.

Andrade, C. E., Resende, M. G. C., Karloff, H. J., and Miyazawa, F. K. (2014a).
Evolutionary algorithms for overlapping correlation clustering. In Proceedings of the
16th Annual Conference on Genetic and Evolutionary Computation, GECCO ’14, New
York, NY, USA. ACM. To appear.

Andrade, C. E., Toso, R. F., Resende, M. G. C., and Miyazawa, F. K. (2014b). Biased
random-key genetic algorithms for the winner determination problem in combinatorial
auctions. Evolutionary Computation. To appear.

Bean, J. C. (1994). Genetic algorithms and random keys for sequencing and optimization.
ORSA Journal On Computing, 2(6):154—160.

Bresina, J. L. (1996). Heuristic-biased stochastic sampling. In Proceedings of the thir-
teenth national conference on Artificial Intelligence, volume 1 of AAAI’'96, pages 271-
278. AAAI Press.

Cramton, P., Shoham, Y., and Steinberg, R. (2006). Combinatorial Auctions. MIT Press.

Ericsson, M., Resende, M. G. C., and Pardalos, P. M. (2002). A genetic algorithm for the
weight setting problem in OSPF routing. J. of Combinatorial Optimization, 6:299-333.

Fulkerson, D. R., Nemhauser, G. L., and Trotter, L. L. (1974). Two computationally
difficult set covering problems that arise in computing the 1-width of incidence matrices
of Steiner triple systems. Springer.

Garey, M. R. and Johnson, D. S. (1979). Computers and Intractability: A Guide to the
Theory of N'P-Completeness. Freeman, San Francisco.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison-Wesley Professional, Boston, MA, USA, 1st edition.

Gongalves, J. F. and Almeida, J. (2002). A hybrid genetic algorithm for assembly line
balancing. J. of Heuristics, 8:629-642.

Gongalves, J. F., Mendes, J. J. M., and Resende, M. G. C. (2005). A hybrid genetic
algorithm for the job shop scheduling problem. European J. of Operational Research,
167:77-95.

Gongalves, J. F., Mendes, J. J. M., and Resende, M. G. C. (2008). A genetic algorithm
for the resource constrained multi-project scheduling problem. European J. of Opera-
tional Research, 189:1171-1190.

Gongalves, J. F. and Resende, M. G. C. (2011a). Biased random-key genetic algorithms
for combinatorial optimization. Journal of Heuristics, 17:487-525.

Gongalves, J. F. and Resende, M. G. C. (2011b). A parallel multi-population genetic
algorithm for a constrained two-dimensional orthogonal packing problem. Journal of
Combinatorial Optimization, 22:180-201.

Gongalves, J. F. and Resende, M. G. C. (2012). A parallel multi-population biased
random-key genetic algorithm for a container loading problem. Computers and Op-
erations Research, 12:179-190.

Gongalves, J. F. and Resende, M. G. C. (2013). A biased random-key genetic algo-
rithm for a 2D and 3D bin packing problem. International J. of Production Economics,
145:500-510.

Gongalves, J. F. and Resende, M. G. C. (2014). An extended Akers graphical method

2479

7!
x L\/[SIMPésI0 BRASILEIRO DE PESRUISA OPERACIONAL 16 a 19
Pesquisa Operacional na Gestao da Seguranca PUblica Setembro de 2014

Salvador/BA

with a biased random-key genetic algorithm for job-shop scheduling. International
Transactions in Operational Research, 21:215-246.

Gongalves, J. F., Resende, M. G. C., and Mendes, J. J. M. (2011). A biased random-
key genetic algorithm with forward-backward improvement for the resource constrained
project scheduling problem. J. of Heuristics, 17:467-486.

Lau, H. C. and Goh, Y. G. (2002). An intelligent brokering system to support multi-
agent web-based 4th-party logistics. In Proceedings of the 14th IEEE International
Conference on Tools with Artificial Intelligence, ICTAI 02, pages 154—, Washington,
DC, USA. IEEE Computer Society.

Leyton-Brown, K. and Shoham, Y. (2006). Combinatorial Auctions, chapter A Test Suite
for Combinatorial Auctions, pages 451-478. MIT Press.

Matsumoto, M. and Nishimura, T. (1998). Mersenne twister: a 623-dimensionally
equidistributed uniform pseudo-random number generator. ACM Trans. Model. Com-
put. Simul., 8:3-30.

Mendes, J. J. M., Goncalves, J. F., and Resende, M. G. C. (2009). A random key based
genetic algorithm for the resource constrained project scheduling problem. Computers
& Operations Research, 36:92—1009.

OR-Library (1990). Operations Research Library. http://people.brunel.ac.
uk/~mast jjb/Jjeb/info.html. Accessed in Oct 30, 2013.

Ostrowski, J., Linderoth, J., Rossi, F., and Smriglio, S. (2010). Solving Steiner triple
covering problems. Optima, 83.

Resende, M. G. C. (2012). Biased random-key genetic algorithms with applications in
telecommunications. TOP, 20:120-153.

Resende, M. G. C., Toso, R. F., Gongalves, J. F., and Silva, R. M. A. (2011). A biased
random-key genetic algorithm for the Steiner triple covering problem. Optimization
Letters, pages 1-15.

Spears, W. M. and DeJong, K. A. (1991). On the virtues of parameterized uniform
crossover. In Proceedings of the Fourth International Conference on Genetic Algorithms,
pages 230-236.

Toso, R. F. and Resende, M. G. C. (2014). A C++ application programming interface
for biased random-key genetic algorithms. Optimization Methods and Software. DOI:
10.1080/10556788.2014.890197.

2480

